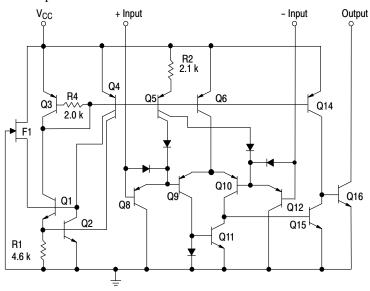
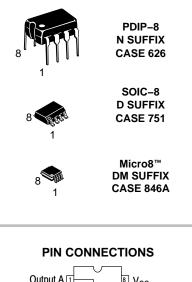
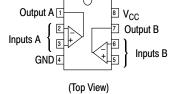
Low Offset Voltage Dual Comparators

The LM393 series are dual independent precision voltage comparators capable of single or split supply operation. These devices are designed to permit a common mode range-to-ground level with single supply operation. Input offset voltage specifications as low as 2.0 mV make this device an excellent selection for many applications in consumer, automotive, and industrial electronics.

Features

- Wide Single–Supply Range: 2.0 Vdc to 36 Vdc
- Split–Supply Range: ±1.0 Vdc to ±18 Vdc
- Very Low Current Drain Independent of Supply Voltage: 0.4 mA
- Low Input Bias Current: 25 nA
- Low Input Offset Current: 5.0 nA
- Low Input Offset Voltage: 5.0 mV (max) LM293/393
- Input Common Mode Range to Ground Level
- Differential Input Voltage Range Equal to Power Supply Voltage
- Output Voltage Compatible with DTL, ECL, TTL, MOS, and CMOS Logic Levels
- ESD Clamps on the Inputs Increase the Ruggedness of the Device without Affecting Performance
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant


Figure 1. Representative Schematic Diagram (Diagram shown is for 1 comparator)

ON Semiconductor®

www.onsemi.com

DEVICE MARKING AND ORDERING INFORMATION

See detailed marking information and ordering and shipping information on pages 6 and 7 of this data sheet.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{CC}	+36 or ±18	V
Input Differential Voltage	V _{IDR}	36	V
Input Common Mode Voltage Range	V _{ICR}	-0.3 to +36	V
Output Voltage	V _O	36	V
Output Short Circuit–to–Ground Output Sink Current (Note 1)	I _{SC} I _{Sink}	Continuous 20	mA
Power Dissipation @ $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	P _D 1/R _{θJA}	570 5.7	mW mW/°C
Operating Ambient Temperature Range LM293 LM393, LM393E LM2903, LM2903E LM2903V, NCV2903 (Note 2)	T _A	-25 to +85 0 to +70 -40 to +105 -40 to +125	°C
Maximum Operating Junction Temperature LM393, LM393E, LM2903, LM2903E, LM2903V LM293, NCV2903	T _{J(max)}	150 150	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

The maximum output current may be as high as 20 mA, independent of the magnitude of V_{CC}, output short circuits to V_{CC} can cause excessive heating and eventual destruction.
NCV2903 is qualified for automotive use.

ESD RATINGS

Rating	HBM	ММ	Unit
ESD Protection at any Pin (Human Body Model – HBM, Machine Model – MM)			
NCV2903 (Note 2)	2000	200	V
LM393E, LM2903E	1500	150	V
LM393DG/DR2G, LM2903DG/DR2G	250	100	V
All Other Devices	1500	150	V

		LM293, LM393, LM393E			LM2903/E/V, NCV2903			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage (Note 4) $T_A = 25^{\circ}C$ $T_{low} \le T_A \le T_{high}$	V _{IO}		±1.0 _	±5.0 ±9.0		±2.0 ±9.0	±7.0 ±15	mV
Input Offset Current $T_A = 25^{\circ}C$ $T_{low} \le T_A \le T_{high}$	l _{iO}		±5.0 _	±50 ±150		±5.0 ±50	±50 ±200	nA
Input Bias Current (Note 5) $T_A = 25^{\circ}C$ $T_{low} \le T_A \le T_{high}$	I _{IB}		20 -	250 400		20 20	250 500	nA
Input Common Mode Voltage Range (Note 6) $T_A = 25^{\circ}C$ $T_{low} \le T_A \le T_{high}$	V _{ICR}	0 0	-	V _{CC} –1.5 V _{CC} –2.0	0 0	-	V _{CC} –1.5 V _{CC} –2.0	V
Voltage Gain $R_L \ge 15 \text{ k}\Omega$, V_{CC} = 15 Vdc, T_A = 25°C	A _{VOL}	50	200	-	25	200	-	V/mV
Large Signal Response Time V_{in} = TTL Logic Swing, V_{ref} = 1.4 Vdc V_{RL} = 5.0 Vdc, R_L = 5.1 k Ω , T_A = 25°C	-	-	300	-	-	300	-	ns
Response Time (Note 7) $V_{RL} = 5.0 \text{ Vdc}, R_L = 5.1 \text{ k}\Omega, T_A = 25^{\circ}\text{C}$	t _{TLH}	-	1.3	-	-	1.5	-	μs
Input Differential Voltage (Note 8) All $V_{in} \ge GND$ or V– Supply (if used)	V _{ID}	-	-	V _{CC}	-	-	V _{CC}	V
Output Sink Current $V_{in} \ge 1.0$ Vdc, $V_{in+} = 0$ Vdc, $V_O \le 1.5$ Vdc $T_A = 25^{\circ}C$	I _{Sink}	6.0	16	-	6.0	16	-	mA
	V _{OL}	-	150 -	400 700		_ 200	400 700	mV
$ \begin{array}{l} \text{Output Leakage Current} \\ \text{V}_{in-} = 0 \text{ V}, \text{ V}_{in+} \geq 1.0 \text{ Vdc}, \text{ V}_{O} = 5.0 \text{ Vdc}, \text{ T}_{A} = 25^{\circ}\text{C} \\ \text{V}_{in-} = 0 \text{ V}, \text{ V}_{in+} \geq 1.0 \text{ Vdc}, \text{ V}_{O} = 30 \text{ Vdc}, \\ \text{T}_{in-} = 0 \text{ V}, \text{ V}_{in+} \geq 1.0 \text{ Vdc}, \text{ V}_{O} = 30 \text{ Vdc}, \end{array} $	I _{OL}	-	0.1	-	-	0.1	-	nA
$T_{low} \le T_A \le T_{high}$ Supply Current	I _{CC}	-	-	1000	-	-	1000	mA
$R_L = \infty$ Both Comparators, $T_A = 25^{\circ}C$ $R_L = \infty$ Both Comparators, $V_{CC} = 30 V$		-	0.4 -	1.0 2.5	-	0.4 -	1.0 2.5	

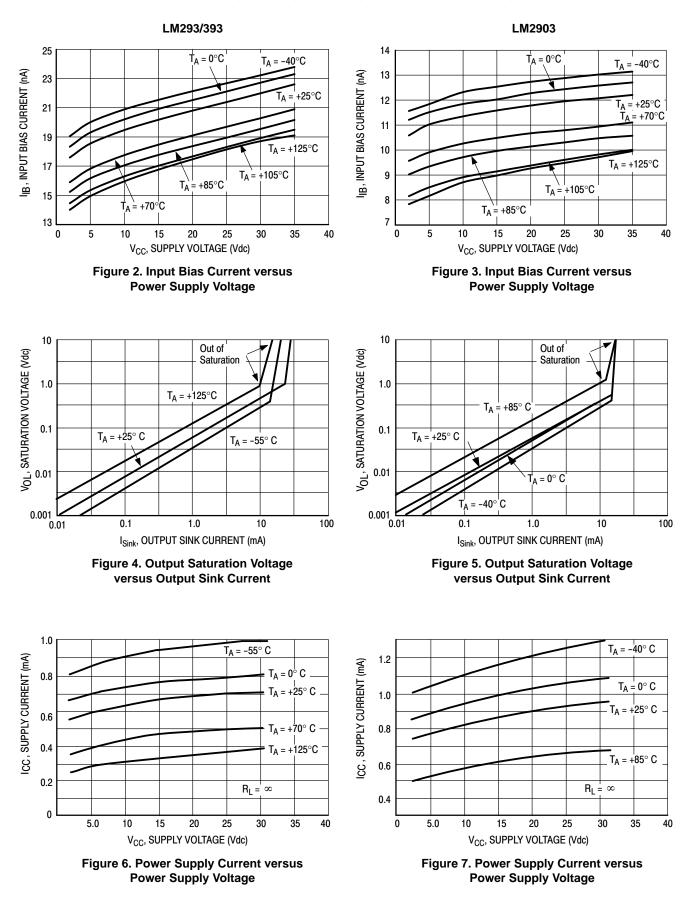
ELECTRICAL CHARACTERISTICS ($V_{CC} = 5.0 \text{ Vdc}, T_{low} \le T_A \le T_{high}$, unless otherwise noted.)

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

 $\begin{array}{l} LM293 \ T_{low} = -25^{\circ}\text{C}, \ T_{high} = +85^{\circ}\text{C} \\ LM393, \ LM393\text{E} \ T_{low} = 0^{\circ}\text{C}, \ T_{high} = +70^{\circ}\text{C} \\ LM2903, \ LM2903\text{E} \ T_{low} = -40^{\circ}\text{C}, \ T_{high} = +105^{\circ}\text{C} \\ LM2903V \ \& \ NCV2903 \ T_{low} = -40^{\circ}\text{C}, \ T_{high} = +125^{\circ}\text{C} \\ \end{array}$

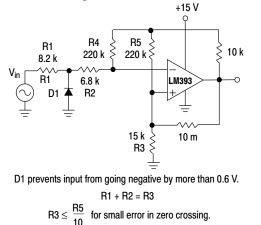
NCV2903 is qualified for automotive use.

3. The maximum output current may be as high as 20 mA, independent of the magnitude of V_{CC}, output short circuits to V_{CC} can cause excessive heating and eventual destruction.


4. At output switch point, $V_0 \simeq 1.4$ Vdc, $R_S = 0 \Omega$ with V_{CC} from 5.0 Vdc to 30 Vdc, and over the full input common mode range $(0 \text{ V to V}_{CC} = -1.5 \text{ V}).$

5. Due to the PNP transistor inputs, bias current will flow out of the inputs. This current is essentially constant, independent of the output state, therefore, no loading changes will exist on the input lines.

6. Input common mode of either input should not be permitted to go more than 0.3 V negative of ground or minus supply. The upper limit of common mode range is V_{CC} –1.5 V.


7. Response time is specified with a 100 mV step and 5.0 mV of overdrive. With larger magnitudes of overdrive faster response times are obtainable.

8. The comparator will exhibit proper output state if one of the inputs becomes greater than V_{CC}, the other input must remain within the common mode range. The low input state must not be less than -0.3 V of ground or minus supply.

APPLICATIONS INFORMATION

These dual comparators feature high gain, wide bandwidth characteristics. This gives the device oscillation tendencies if the outputs are capacitively coupled to the inputs via stray capacitance. This oscillation manifests itself during output transitions (V_{OL} to V_{OH}). To alleviate this situation, input resistors <10 k Ω should be used.

Figure 8. Zero Crossing Detector (Single Supply)

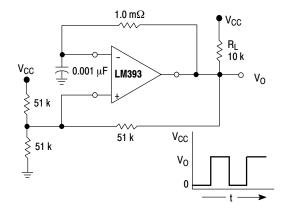
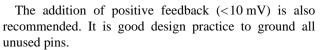
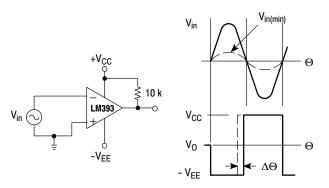
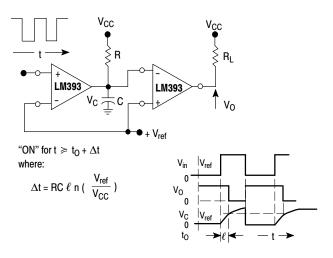
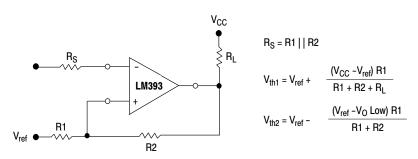




Figure 10. Free–Running Square–Wave Oscillator

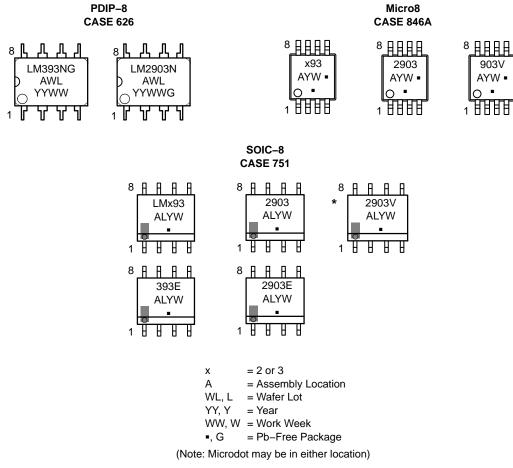


Differential input voltages may be larger than supply voltage without damaging the comparator's inputs. Voltages more negative than -0.3 V should not be used.



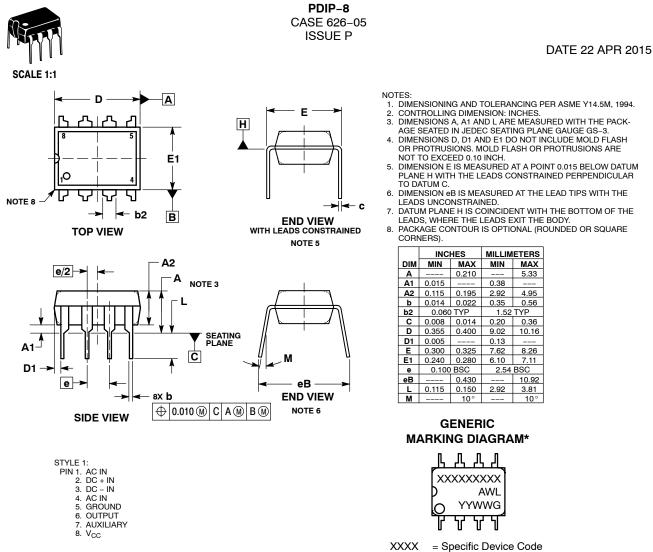
 $V_{in(min)} \approx 0.4$ V peak for 1% phase distortion ($\Delta \Theta$).

Figure 9. Zero Crossing Detector (Split Supply)



MARKING DIAGRAMS

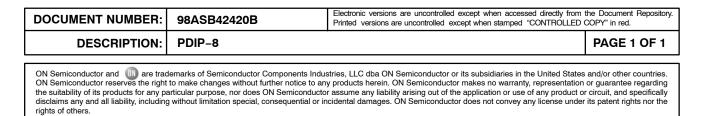
*This marking diagram also applies to NCV2903DR2G

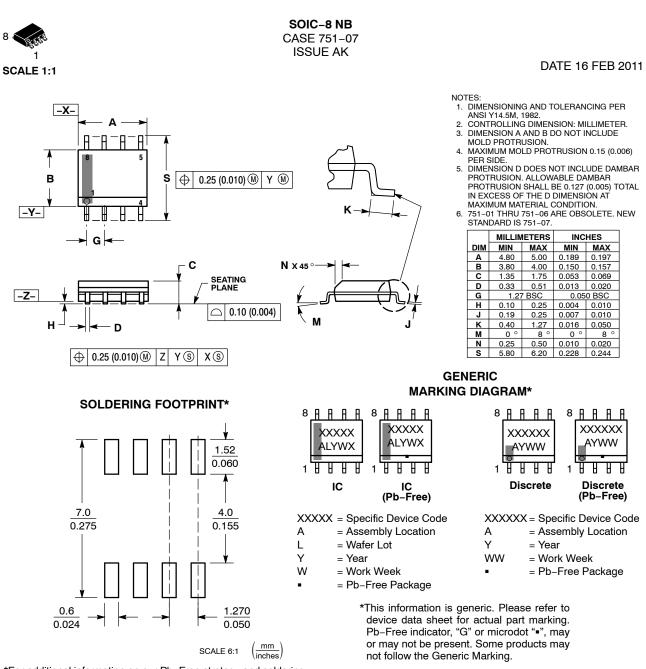

ORDERING INFORMATION

Device	Operating Temperature Range	Package	Shipping [†]
LM293DG		SOIC-8	98 Units / Rail
LM293DR2G	-25°C to +85°C	(Pb-Free)	2500 / Tape & Reel
LM293DMR2G	-23 0 10 100 0	Micro8 (Pb–Free)	4000 / Tape and Reel
LM393DG		SOIC-8	98 Units / Rail
LM393DR2G		(Pb-Free)	2500 / Tape & Reel
LM393EDR2G	0°C to +70°C	SOIC-8 (Pb-Free)	2500 / Tape & Reel
LM393NG		PDIP-8 (Pb-Free)	50 Units / Rail
LM393DMR2G		Micro8 (Pb–Free)	4000 / Tape and Reel
LM2903DG		SOIC-8	98 Units / Rail
LM2903DR2G		(Pb-Free)	2500 / Tape & Reel
LM2903EDR2G	-40°C to +105°C	SOIC-8 (Pb-Free)	2500 / Tape & Reel
LM2903DMR2G		Micro8 (Pb–Free)	4000 / Tape and Reel
LM2903NG		PDIP-8 (Pb-Free)	50 Units / Rail
LM2903VDG		SOIC-8	98 Units / Rail
LM2903VDR2G		(Pb-Free)	2500 / Tape & Reel
LM2903VNG	-40°C to +125°C	PDIP-8 (Pb-Free)	50 Units / Rail
NCV2903DR2G*		SOIC-8 (Pb-Free)	2500 / Tape & Reel
NCV2903DMR2G*		Micro8 (Pb–Free)	4000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable.




A = Assembly Location

- WL = Wafer Lot
- YY = Year
- WW = Work Week
- G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot " ■", may or may not be present.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-8 NB	PAGE 1			
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or ncidental damages. ON Semiconductor does not convey any license under	or guarantee regarding r circuit, and specifically		

© Semiconductor Components Industries, LLC, 2019

SOIC-8 NB CASE 751-07 ISSUE AK

STYLE 1: PIN 1. EMITTER COLLECTOR 2. COLLECTOR 3. 4. EMITTER 5. EMITTER BASE 6. 7 BASE EMITTER 8. STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN DRAIN 4. GATE 5. 6. GATE SOURCE 7. 8. SOURCE STYLE 9: PIN 1. EMITTER, COMMON COLLECTOR, DIE #1 COLLECTOR, DIE #2 2. З. EMITTER, COMMON 4. 5. EMITTER, COMMON 6 BASE. DIE #2 BASE, DIE #1 7. 8. EMITTER, COMMON STYLE 13: PIN 1. N.C. 2. SOURCE 3 GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. DRAIN 8. STYLE 17: PIN 1. VCC 2. V2OUT V10UT З. TXE 4. 5. RXE 6. VFF 7. GND 8. ACC STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3 CATHODE 3 CATHODE 4 4. 5. CATHODE 5 6. COMMON ANODE COMMON ANODE 7. 8. CATHODE 6 STYLE 25: PIN 1. VIN 2 N/C REXT З. 4. GND 5. IOUT 6. IOUT IOUT 7. 8. IOUT STYLE 29: BASE, DIE #1 PIN 1. 2 EMITTER, #1 BASE, #2 З. EMITTER, #2 4. 5 COLLECTOR, #2

STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 COLLECTOR, #2 3. 4 COLLECTOR, #2 BASE, #2 5. EMITTER, #2 6. 7 BASE #1 EMITTER, #1 8. STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN SOURCE 4. SOURCE 5. 6. GATE GATE 7. 8. SOURCE STYLE 10: GROUND PIN 1. BIAS 1 OUTPUT 2. З. GROUND 4. 5. GROUND 6 BIAS 2 INPUT 7. 8. GROUND STYLE 14: PIN 1. N-SOURCE 2. N-GATE P-SOURCE 3 P-GATE 4. P-DRAIN 5 6. P-DRAIN N-DRAIN 7. N-DRAIN 8. STYLE 18: PIN 1. ANODE 2. ANODE SOURCE 3. GATE 4. 5. DRAIN 6 DRAIN CATHODE 7. CATHODE 8. STYLE 22 PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3 COMMON CATHODE/VCC 4. I/O LINE 3 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND STYLE 26: PIN 1. GND 2 dv/dt З. ENABLE 4. ILIMIT 5. SOURCE SOURCE 6. SOURCE 7. 8. VCC STYLE 30: DRAIN 1 PIN 1. DRAIN 1 2 GATE 2 З. SOURCE 2 4. SOURCE 1/DRAIN 2 SOURCE 1/DRAIN 2 5. 6.

STYLE 3: PIN 1. DRAIN, DIE #1 DRAIN, #1 2. DRAIN, #2 З. 4. DRAIN, #2 GATE, #2 5. SOURCE, #2 6. 7 GATE #1 8. SOURCE, #1 STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS THIRD STAGE SOURCE GROUND З. 4. 5. DRAIN 6. GATE 3 SECOND STAGE Vd 7. FIRST STAGE Vd 8. STYLE 11: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. 3. GATE 2 4. 5. DRAIN 2 6. DRAIN 2 DRAIN 1 7. 8. DRAIN 1 STYLE 15: PIN 1. ANODE 1 2. ANODE 1 ANODE 1 3 ANODE 1 4. 5. CATHODE, COMMON CATHODE, COMMON CATHODE, COMMON 6. 7. CATHODE, COMMON 8. STYLE 19: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. 3. GATE 2 4. 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 8. **MIRROR 1** STYLE 23: PIN 1. LINE 1 IN COMMON ANODE/GND COMMON ANODE/GND 2. 3 LINE 2 IN 4. LINE 2 OUT 5. COMMON ANODE/GND COMMON ANODE/GND 6. 7. LINE 1 OUT 8. STYLE 27: PIN 1. ILIMIT 2 OVI 0 UVLO З. 4. INPUT+ 5. SOURCE SOURCE 6. SOURCE 7. 8 DRAIN

DATE 16 FEB 2011

STYLE 4: PIN 1. 2. ANODE ANODE ANODE З. 4. ANODE ANODE 5. 6. ANODE 7 ANODE COMMON CATHODE 8. STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 BASE, #2 З. COLLECTOR, #2 4. COLLECTOR, #2 5. 6. EMITTER, #2 EMITTER, #1 7. 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE SOURCE 2. 3. GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 EMITTER, DIE #2 3 BASE, DIE #2 4. 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 COLLECTOR, DIE #1 7. COLLECTOR, DIE #1 8. STYLE 20: PIN 1. SOURCE (N) GATE (N) SOURCE (P) 2. 3. 4. GATE (P) 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 24: PIN 1. BASE 2. EMITTER 3 COLLECTOR/ANODE COLLECTOR/ANODE 4. 5. CATHODE 6. CATHODE COLLECTOR/ANODE 7. 8. COLLECTOR/ANODE STYLE 28: PIN 1. SW_TO_GND 2. DASIC OFF DASIC_SW_DET З. 4. GND 5. 6. V MON VBULK 7. VBULK 8 VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	SOIC-8 NB PAGE 2 OF 2					
ON Semiconductor reserves the right the suitability of its products for any pa	ON Semiconductor and a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or inclidental damages. ON Semiconductor does not convex any license under its patent rights nor the					

SOURCE 1/DRAIN 2

7.

8. GATE 1

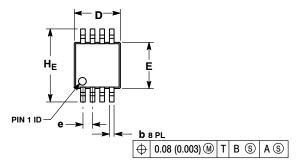
COLLECTOR, #2

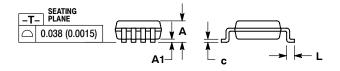
COLLECTOR, #1

COLLECTOR, #1

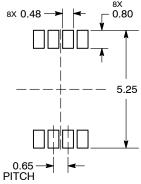
6.

7.


8


rights of others

DATE 02 JUL 2013



SCALE 2:1

RECOMMENDED SOLDERING FOOTPRINT*

DIMENSION: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Micro8[™] CASE 846A-02 **ISSUE J**

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

- 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
- 0.15 (0.000) PER SIDE. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 4 5.

846A-01 OBSOLETE, NEW STANDARD 846A-02.

	м	ILLIMETE	RS			
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α			1.10			0.043
A1	0.05	0.08	0.15	0.002	0.003	0.006
b	0.25	0.33	0.40	0.010	0.013	0.016
С	0.13	0.18	0.23	0.005	0.007	0.009
D	2.90	3.00	3.10	0.114	0.118	0.122
E	2.90	3.00	3.10	0.114	0.118	0.122
е		0.65 BSC			0.026 BSC)
L	0.40	0.55	0.70	0.016	0.021	0.028
HE	4.75	4.90	5.05	0.187	0.193	0.199

XXXX = Specific Device Code

- А = Assembly Location
- Y = Year

.

- W = Work Week
 - = Pb-Free Package
- (Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " •", may or may not be present.

STYLE 1:	STYLE 2:	STYLE 3:
PIN 1. SOURCE	PIN 1. SOURCE 1	PIN 1. N-SOURCE
2. SOURCE	2. GATE 1	2. N-GATE
SOURCE	SOURCE 2	3. P-SOURCE
4. GATE	4. GATE 2	4. P-GATE
5. DRAIN	5. DRAIN 2	5. P-DRAIN
6. DRAIN	6. DRAIN 2	6. P-DRAIN
7. DRAIN	7. DRAIN 1	7. N-DRAIN
8. DRAIN	8. DRAIN 1	8. N-DRAIN

DOCUMENT NUMBER:	98ASB14087C	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION: MICRO8 PAGE 1 OF						
ON Semiconductor reserves the right the suitability of its products for any pa	ON Semiconductor and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the					

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

NCV2903DMR2 NCV2903DMR2G NCV2903DR2 NCV2903DR2G LM2903D LM2903DG LM2903DMR2 LM2903DMR2G LM2903DR2 LM2903DR2G LM2903NG LM2903VD LM2903VDG LM2903VDR2 LM2903VDR2G LM2903VN LM2903VNG LM293D LM293DG LM293DMR2 LM293DMR2G LM293DR2G LM293DR2G LM393D LM393DG LM393DMR2 LM393DMR2G LM393DR2 LM393DR2G LM393NG SC2903VDR2G NCV2903VDR2G LM393EDR2G LM2903EDR2G SC2903DG SC393DR2G SC2903DR2G SC2903NG