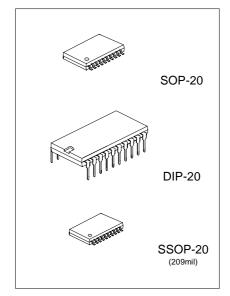
LINEAR INTEGRATED CIRCUIT UTC 75232

MULTIPLE RS-232 DRIVERS AND RECEIVERS

DESCRIPTION

The UTC 75232 complies with the requirements of the TIA/EIA232-F and ITU (formerly CCITT) V.28 standards. These standards are for data interchange between a host computer and peripheral at signaling rates up to 20kbit/s. The switching speeds of the UTC 75232 are fast enough to support rates up to 120kbit/s with lower capacitive loads (shorter cables). Interoperability at the higher signaling rates cannot be expected unless the designer has design control of the cable and the interface circuits at both ends. For interoperability at signaling rates to 120kbit/s, use of ANSI ITA/EIA-423-B (ITU V.10) and TIA/EIA-422-B (ITU V.11) standards are recommended.

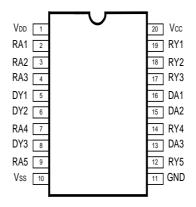

The UTC 75232 is Characterized for operation over the temperature range of 0°C to 70°C.

FEATURES

*Single chip with easy interface between UART and Serial-Port Connector of IBM[™], PC/AT[™] and Compatibles.

*Meets or Exceeds the Requirements of ANSI Standard TIA/EIA-232-F and ITU Recommendation V.28 *Designed to support data rates up to 120 kbit/s

*ESD Protection to 2kV on Bus Terminals

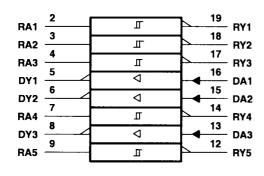

UTC UNISONIC TECHNOLOGIES CO., LTD.

QW-R113-005,B

1

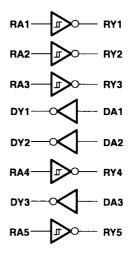
LINEAR INTEGRATED CIRCUIT UTC 75232

PIN CONFIGURATIONS

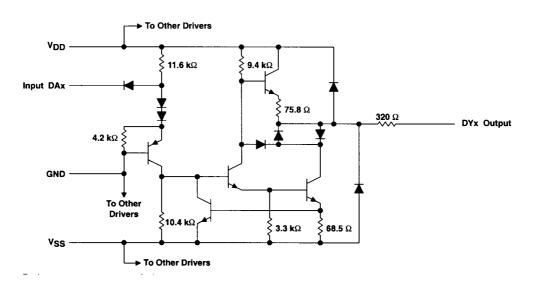


PIN DESCRIPTION

SYMBOL	NAME AND FUNCTION
Vdd	Supply Voltage
RA1	First Receiver Input
RA2	Second Receiver Input
RA3	Third Receiver Input
DY1	First Driver Output
DY2	Second Driver Output
RA4	Fourth Receiver Input
DY3	Third Driver Output
RA5	Fifth Receiver Input
Vss	Supply Voltage
GND	Ground
RY5	Fifth Receiver Output
DA3	Third Driver Input
RY4	Fourth Receiver Output
DA2	Second Driver Input
DA1	First Driver Input
RY3	Third Receiver Output
RY2	Second Receiver Output
RY1	First Receiver Output
Vcc	Supply Voltage
	SYMBOL Vbb RA1 RA2 RA3 DY1 DY2 RA4 DY3 RA5 Vss GND RY5 DA3 RY4 DA2 DA1 RY3 RY2 RY1

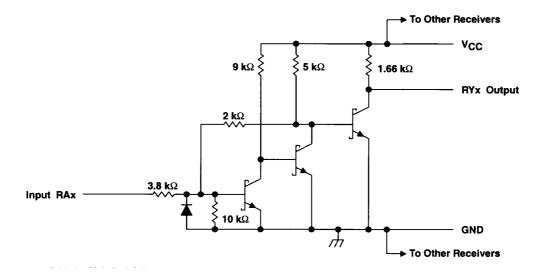

UTC UNISONIC TECHNOLOGIES CO., LTD. 2

LOGIC SYMBOL AND LOGIC DIAGRAM



This symbol is in accordance with ANSI/IEEE std 91-1984

and IEC Publication 617-12



CIRCUIT OF DRIVERS (Resistor value shown are nominal.)

UTC UNISONIC TECHNOLOGIES CO., LTD. 3

CIRCUIT OF EACH RECEIVER (Resistor value shown are nominal.)

UTC UNISONIC TECHNOLOGIES CO., LTD. 4

ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR TEMPERATURE RANGE (unless otherwise specified)

PARAMETER	SYMBOL	VALUE	UNIT
Supply voltage (Note 1)	VDD	15	V
Supply voltage (Note 1)	Vss	-15	V
Supply voltage (Note 1)	Vcc	10	V
Input voltage range (DRIVER)	VI	-15 to 7	V
Input voltage range (RECEIVER)	VI	-30 to 30	V
Driver output voltage range	Vo	-15 to 15	V
Receiver low level output current	lo	20	mA
Thermal impedance (note 2) SSOP-20 SOP-20 DIP-20	θ_{JA}	115 97 67	°C/W
Storage temperature range	Tstg	-65 to +150	°C
Lead temperature 1.6mm from case for 10 sec	ΤL	260	°C

Note 1: All voltage are with respect to the network ground terminal.

Note 2: The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Supply voltage	Vdd	7.5	9	15	V
Supply voltage	Vss	-7.5	-9	-15	V
Supply voltage	Vcc	4.5	5	5.5	V
High level input voltage (driver only)	Viн	1.9			V
Low level input voltage (driver only)	VIL			0.8	V
High level output current	Іон				mA
DRIVER				-6.0	
RECEIVER				-0.5	
Low level output current	lol				mA
DRIVER				6	
RECEIVER				16	
Operating free-air temperature	TA	0		70	°C

SUPPLY CURRENTS

PARAMETER	SYMBOL	TEST CON	TEST CONDITIONS			MAX	UNIT
			Vdd	Vss			
Supply current from VDD	ldd	No load.	9	-9		15	mA
		All inputs at 1.9V	12	-12		19	
			15	-15		25	mA
		No load.	9	-9		4.5	
		All inputs at 0.8V	12	-12		5.5	
			15	-15		9	
Supply current from Vss	lss	No load.	9	-9		-15	mA
		All inputs at 1.9V	12	-12		-19	
			15	-15		-25	
		No load.	9	-9		-3.2	mA
		All inputs at 0.8V	12	-12		-3.2	
			15	-15		-3.2	
Supply current from Vcc	lcc	No load. All inputs	at 5V, `	Vcc=5V		30	mA

UTC UNISONIC TECHNOLOGIES CO., LTD. 5

LINEAR INTEGRATED CIRCUIT UTC 75232

DRIVER ELECTRICAL CHARACTERISTICS OVER RECOMMENDED OPERATING FREE-AIR TEMPERATURE RANGE (VDD=9V, Vss=-9V, Vcc=5V, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
High level output voltage	Vон	V⊫=0.8V, R∟=3 kΩ (Figure 1)	6	7.5		V
Low level output voltage (note 3)	Vol	V⊮=1.9V, R∟=3 kΩ (Figure		-7.5	-6	V
		1)				
High level input current	Ін	V⊫5V (Figure 2)			10	μA
Low level input current	lı∟	V⊫0V (Figure 2)			-1.6	mA
High level short circuit output current	IOS(H)	V⊩=0.8V, Vo=0V(Figure 1)	-4.5	-12	-19.5	mA
(note 4)						
Low level short circuit output current	IOS(L)	V⊮=2V, Vo=0V(Figure 1)	4.5	12	19.5	mA
Output resistance (note 5)	ro	VDD=Vss=Vcc=0V	300			Ω
		Vo=-2 to 2V				

Note 3: The algebraic convention, where the more positive (less negative) limit is designated as maximum, is used in this datasheet for logic levels only (e.g. if -10V is a maximum, the typical value is a more negative voltage). Note 4: Output short circuit conditions must maintain the total power dissipation below absolute maximum ratings. Note 5: Test conditions are those specified by TIA/EIA232-F and as listed above.

DRIVER SWITCHING CHARACTERISTICS (VDD=12V, VSS=-12V, VCC=5V, TA=25°C)

		(, , , , , , , , , , , , , , , , ,	,		,	
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Propagation delay time, low to high level output	t PLH	RL=3 to 7 kΩ, CL=15pF (Figure 3)		315	500	ns
Propagation delay time, high to low level output	tPHL	RL=3 to 7 kΩ, CL=15pF (Figure 3)		75	175	ns
Transition time, low to high level output	t⊤∟н	R∟=3 to 7 kΩ, C∟=15pF (Figure 3)		60	100	ns
		RL=3 to 7 k Ω , CL=2500pF (Note 6, Figure 3)		1.7	2.5	μs
Transition time high to low level output	t⊤н∟	R∟=3 to 7 kΩ, C∟=15pF (Figure 3)		40	75	ns
		RL=3 to 7 k Ω , CL=2500pF (Note 7, Figure 3)		1.5	2.5	μs

Note 6: Measured between -3V and 3V points of the output waveform (TIA/EIA-232-F conditions), all unused inputs are tied.

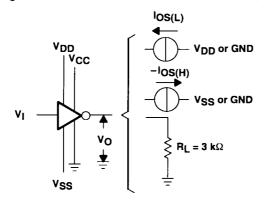
Note 7: Measured between 3V and -3V points of the output waveform (TIA/EIA-232-F conditions), all unused inputs are tied.

UTC UNISONIC TECHNOLOGIES CO., LTD.

QW-R113-005.B

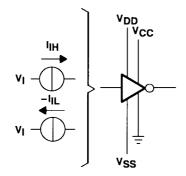
6

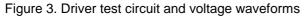
RECEIVER ELECTRICAL CHARACTERISTICS OVER RECOMMENDED

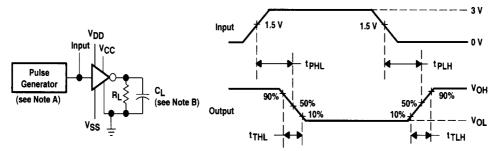

OPERATING CONDITIONS (T_A=25°C, Vcc=5V, V_{DD}=9V, Vss=-9V)

PARAMETER	SYMBOL	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
Positive going threshold voltage	VT+	(Figure 5)					V
		TA=25°0	C	1.75	1.9	2.3	
		TA=0°C	to 70°C	1.55		2.3	
Negative going threshold voltage	VT-			0.75	0.97	1.25	V
Input hysteresis(VT+ - VT-)	Vhys			0.5			V
High level output voltage	Vон	Іон=-0.5mA	VIH=0.75V	2.6	4	5	V
			Inputs Open	2.6			
Low level output voltage	Vol	VI=3V, IOL=10)mA		0.2	0.45	V
High level input current	Ін	VI=25V (Figur	e 5)	3.6		8.3	mA
		VI=3V (Figure	5)	0.43			
Low level input current	lı∟	V⊫-25V (Figu	ire 5)	-3.6		-8.3	mA
		VI=-3V (Figure	e 5)	-0.43			
Short-circuit output current	los	(Figure 4)		1	-3.4	-12	mA

RECEIVER SWITCHING CHARACTERISTICS (VDD=12V, Vss=-12V, Vcc=5V, T_A=25°C)


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Propagation delay time, low to high level	t PLH	RL=5 kΩ, CL=50pF		107	250	ns
output		(Figure 6)				
Propagation delay time, high to low level	t PHL			42	150	ns
output						
Transition time low to high level output	t TLH			175	350	ns
Transition time high to low level output	tTHL			16	60	ns
Propagation delay time, low to high level	t PLH	RL=1.5 kΩ, CL=15pF		100	160	ns
output		(Figure 6)				
Propagation delay time, high to low level	t PHL			60	100	ns
output						
Transition time low to high level output	ttlh]		90	175	ns
Transition time high to low level output	tTHL]		15	50	ns


Figure 1. Driver test circuit for VOH, VOL, IOS(H), IOS(L)



UTC UNISONIC TECHNOLOGIES CO., LTD. 7

Figure 2. Driver test circuit for IIH, IIL

Note 1. The pulse generator has the following characteristics: tw= 25μ s, PRR=20kHz, Zo= 50Ω , tr=tf<50ns. Note 2. CL includes probe and jig capacitance.

UTC UNISONIC TECHNOLOGIES CO., LTD. 8

Figure 4. Receiver test circuit for los

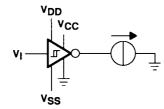
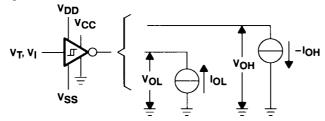
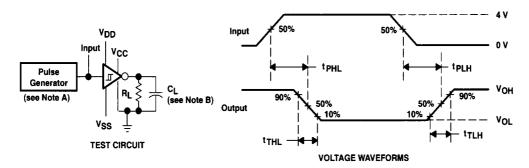
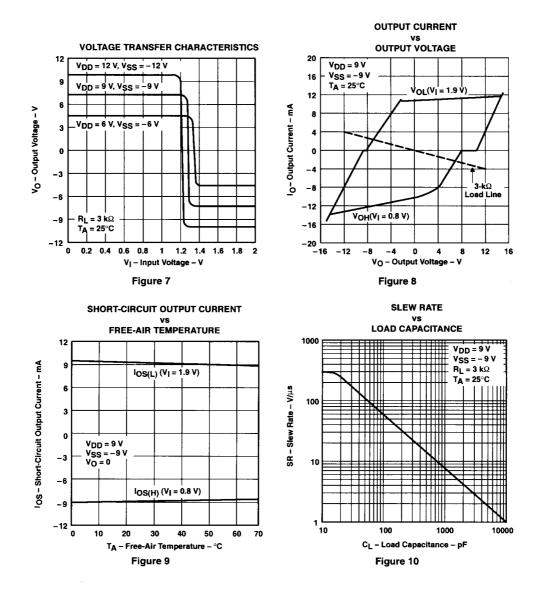
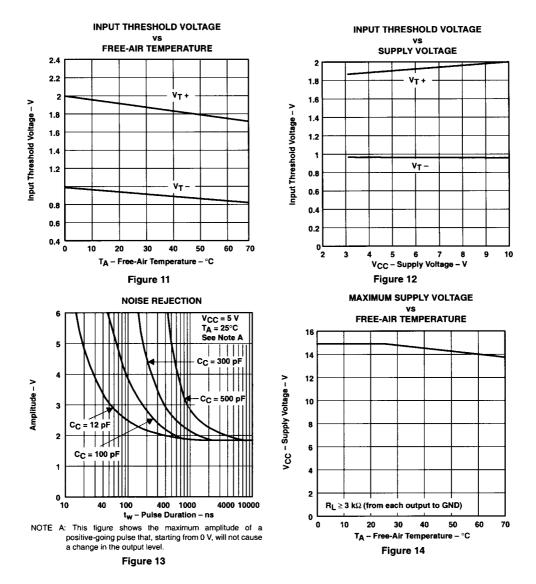


Figure 5. Receiver test circuit for VT, VOH, VOL


Figure 6. Receiver propagation and transition times

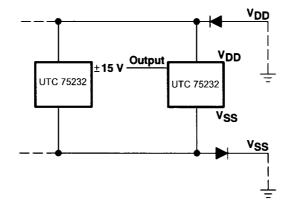
Note 1. The pulse generator has the following characteristics: tw= 25μ s, PRR=20kHz, Zo= 50Ω , tr=tf<50ns. Note 2. CL includes probe and jig capacitance.


UTC UNISONIC TECHNOLOGIES CO., LTD. 9

TYPICAL CHARACTERISTICS (DRIVER)

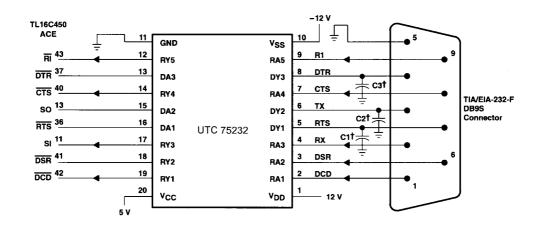
UTC UNISONIC TECHNOLOGIES CO., LTD. 10

TYPICAL CHARACTERISTICS (RECEIVER)



UTC UNISONIC TECHNOLOGIES CO., LTD. 11

APPLICATION INFORMATION


Figure 15. Power-Supply protection to meet Power-Off fault conditions of TIA/TIA-232-F

Diodes placed in series with the VDD and VSS leads protect the UTC 75185 in the fault condition in which the device outputs are shorted to ±15V and the power supplies are at low and provide low-impedance paths to ground.

Figure 16. Typical Connection

" \dagger " : See Figure 10 to select the correct values for the loading capacitors (C1, C2, and C3), which are required to meet the RS-232 maximum slew-rate requirement of 30V/µs. The value of the loading capacitors required depends upon the line length and desired slew rate, but typically is 330 pF.

UTC UNISONIC TECHNOLOGIES CO., LTD. 12