

Positive Adjustable 1.5A output Voltage Regulator in bare die form

Rev 1.0 03/03/18

Description

The LM317 is a wide V_{IN} adjustable 3-terminal voltage regulator with guaranteed 1.5A output current and equipped with internal limiting + thermal shutdown features for overload immunity. Output voltage is set by two external resistors. Additional to standard regulator function, the device can be used as a simple adjustable switching regulator; a programmable output regulator; or by connecting a fixed resistor between adjustment pin and output, can be used as a precision current regulator. A shutdown mechanism can be introduced by clamping the adjust terminal to ground which programs output to 1.2V where most loads draw little current.

Ordering Information

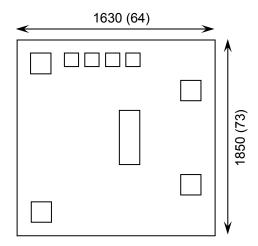
The following part suffixes apply:

- No suffix MIL-STD-883 /2010B Visual Inspection
- "H" MIL-STD-883 /2010B Visual Inspection+ MIL-PRF-38534 Class H LAT
- "K" MIL-STD-883 /2010A Visual Inspection (Space)
 + MIL-PRF-38534 Class K LAT

LAT = Lot Acceptance Test.

For further information on LAT process flows see below.

www.siliconsupplies.com\quality\bare-die-lot-qualification


Supply Formats:

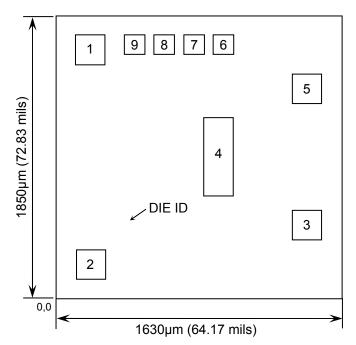
- Default Die in Waffle Pack (100 per tray capacity)
- Sawn Wafer on Tape On request
- Unsawn Wafer On request
- Tape & Reel On request
- In Metal or Ceramic package On request

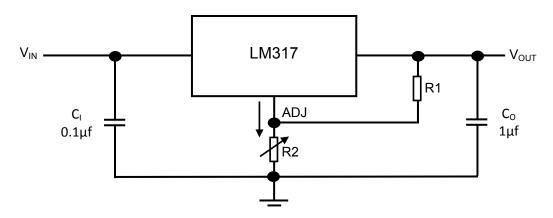
Features:

- Output current in excess of 1.5A
- Adjustable output between 1.2V 37V
- Internal short circuit current limit
- Internal thermal overload protection
- Output transistor Safe-Area Compensation
- Floating operation for high voltage applications
- 0.01% Line & 0.1% Load Regulation
- Negative Voltage complement is LM337

Die Dimensions in µm (mils)

Mechanical Specification


Die Size (Unsawn)	1630 x 1850 64 x 73	μm mils	
Minimum Bond Pad Size	140 x 140 5.51 x 5.51	µm mils	
Die Thickness	350 (±20) 13.78 (±0.79)	μm mils	
Top Metal Composition	Al 1%Si 2.2μm		
Back Metal Composition	Ti/Ni/Ag 1.2 μm		


Rev 1.0 03/03/18

Pad Layout and Functions

PAD	FUNCTION	COORDINATES (mm)			
ו אט	. Sitement	X	Y		
1	V _{OUT}	0.073	1.637		
2	ADJ	0.073	0.073		
3	V _{OUT}	1.400	0.331		
4	V _{IN} (x2 wire)	0.773	0.714		
5	V _{OUT}	1.400	1.402		
6	NC	0.641	1.715		
7	NC	0.512	1.715		
8	NC	0.383	1.715		
9	NC	0.254	1.715		
NC = NO CONNECT					
CONNECT CHIP BACK TO V _{OUT}					

Typical Application

1.2V-25V Adjustable Regulator

$$V_{OUT} = 1.25V (1 + \frac{R2}{R1}) + I_{ADJ} * R2$$

I_{ADJ} tolerance <100μA

 C_l is required if the regulator is located an appreciable distance from power supply filter. C_0 is not required for stability; however it does improve transient response. For optimum stability and transient response locate C_l C_0 as close as possible to the regulator.

Rev 1.0 03/03/18

Absolute Maximum Ratings¹

PARAMETER	SYMBOL	VALUE	UNIT	
Input–Output Voltage differential	V _{IN} - V _{OUT}	40	V	
Power Dissipation	P _D	Internally Limited		
Operating Junction Temperature	T _J	150 °C		
Storage Temperature	T _{STG}	-65 to 150	°C	

Recommended Operating Conditions

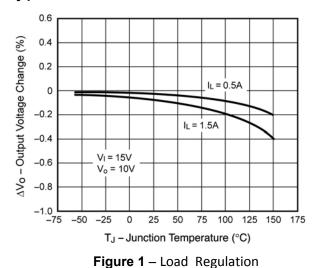
PARAMETER	SYMBOL	MIN	MAX	UNIT
Output Voltage	V _{OUT}	1.25	37	V
Input-Output Voltage differential	V _{IN} - V _{OUT}	4	40	V
Output Current	I _{OUT}	0.01	1.5	A
Operating Junction Temperature Range	TJ	0 to	125	°C

DC Electrical Characteristics, V_{IN}-V_{OUT}=5V, I_{OUT}=0.5A, I_{MAX} = 1.5A, T_J = 0°C to +125°C(unless noted otherwise)

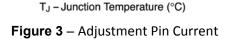
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Reference Voltage	V_{REF}	$3V \le V_{IN} - V_{OUT} \le 40V$, $10\text{mA} \le I_{OUT} \le I_{MAX}$	1.2	1.25	1.30	V
Line Regulation ²	ΔV_{OUT}	$3V \le V_{IN} - V_{OUT} \le 40V, T_J = 25^{\circ}C$	-	0.01	0.04	% / V _{OUT}
Line Regulation	A 6 001	$3V \le V_{IN} - V_{OUT} \le 40V$		0.02	0.07	70 / V _{OUT}
		$V_{IN} \le 5V,10$ mA $\le I_{OUT} \le I_{MAX}, T_J = 25$ °C	-	5	25	mV
Load Regulation ²	ΔV_{OUT}	$V_{IN} \ge 5V,10$ mA $\le I_{OUT} \le I_{MAX}, T_{J} = 25$ °C	-	0.1	0.5	% / V _{OUT}
		$V_{IN} \le 5V,10mA \le I_{OUT} \le I_{MAX}$	-	20	70	mV
		$V_{IN} \ge 5V,10mA \le I_{OUT} \le I_{MAX}$	-	0.3	1.5	% / V _{OUT}
Thermal Regulation	-	20ms pulse, T _J = 25°C	-	0.03	0.07	% / W
Adjustment Pin Current	I _{ADJ}		-	50	100	μΑ
Adjustment Pin Current Change	ΔI_{ADJ}	$2.5V \le V_{IN} - V_{OUT} \le 40V$, $10\text{mA} \le I_L \le I_{MAX}$, $P_D \le P_{MAX}$	-	0.2	5.0	μΑ
Temperature Stability	-	$T_{LOW} \le T_{J} \le T_{HIGH}$	-	1	-	%
Minimum Load Current	IL	V _{IN} -V _{OUT} = 40V	-	3.5	10	mA
Output Current	I _{MAX}	$ V_{IN} - V_{OUT} \le 15V, P \le 20W$	1.5	2.2	-	А
Limit ³		$ V_{IN} - V_{OUT} = 40V, P \le 20W, T_J = 25^{\circ}C$	0.15	0.40	-	A

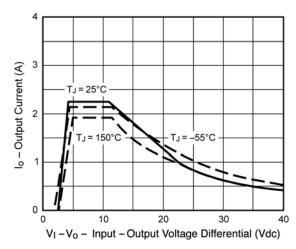
^{1.} Operation above the absolute maximum rating may cause device failure. Operation at the absolute maximum ratings, for extended periods, may reduce device reliability.

^{2.} Regulation is measured at a constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specifications for thermal regulation.


Rev 1.0 03/03/18

DC Electrical Characteristics, V_{IN}-V_{OUT}=5V, I_{OUT}=0.5A, I_{MAX} = 1.5A, T_J = 0°C to +125°C(unless noted otherwise)


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
RMS Output Noise, % of V _{OUT}	eN	10 Hz ≤ f ≤ 10 kHz, T _J = 25°C	-	0.003	-	%
Ripple Rejection	RR	$V_{OUT} = 10V, f = 120 \text{ Hz}, C_{ADJ} = 0\mu\text{F}$	-	65	-	dB
Ratio		$V_{OUT} = 10V, f = 120 \text{ Hz}, C_{ADJ} = 10\mu\text{F}$	66	80	-	QD
Long Term Stability	-	T _A = 125°C, 1000 hrs	-	0.3	1	%
Thermal Resistance ³	Rθ _{JC}	$T_{LOW} \le T_{J} \le T_{HIGH}$	-	2	-	°C/W


^{3.} Assembled in TO-3 package. Die performance is dependent on die attach, substrate choice & assembly method.

Typical Electrical Characteristics, T_J = 25°C (unless noted otherwise)

75 70 65 60 60 45 50 45 40 35 -75 -50 -25 0 25 50 75 100 125 150 175

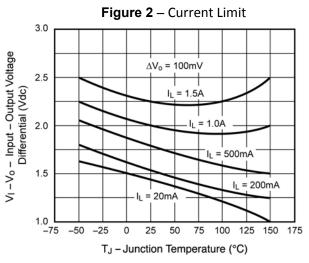


Figure 4 – Dropout Voltage

Typical Electrical Characteristics, T_J = 25°C (unless noted otherwise)

Rev 1.0 03/03/18

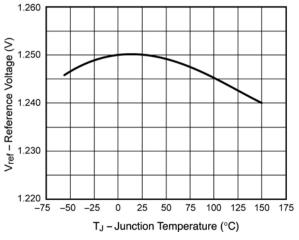


Figure 5 – Temperature Stability

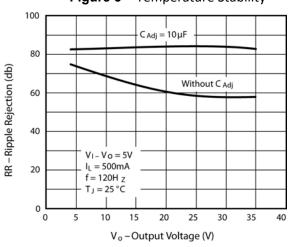


Figure 7 – Ripple Rejection versus Output Voltage

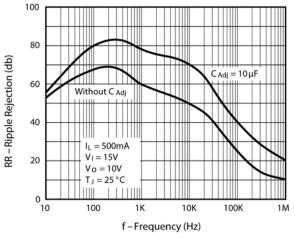
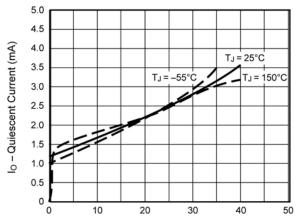



Figure 9 – Ripple Rejection versus Frequency

V_I –V₀ – Input – Output Voltage Differential (Vdc)

Figure 6 – Minimum Operating Current

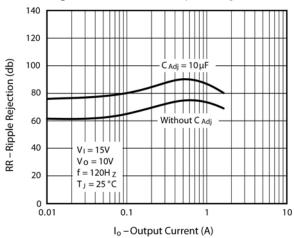


Figure 8 - Ripple Rejection versus Output Current

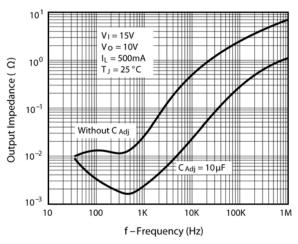


Figure 10 - Output Impedance

Rev 1.0 03/03/18

Typical Electrical Characteristics, T_J = 25°C (unless noted otherwise)

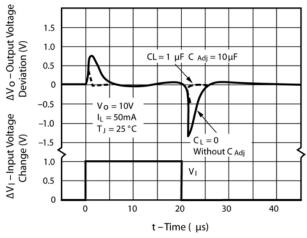


Figure 11- Line Transient Response

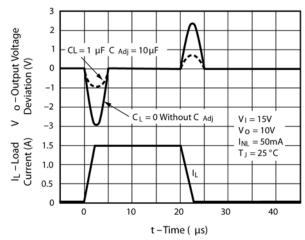


Figure 12 - Load Transient Response

DISCLAIMER: The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Silicon Supplies Ltd hereby disclaims any and all warranties and liabilities of any kind.

LIFE SUPPORT POLICY: Silicon Supplies Ltd components may be used in life support devices or systems only with the express written approval of Silicon Supplies Ltd, if a failure of such components can reasonably be expected to cause the failure of that life support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

