
D/CRCW e3

www.vishay.com

Vishay

Standard Thick Film Chip Resistors

D/CRCW e3 standard thick film chip resistors are the perfect choice for most fields of modern electronics where high reliability and stability are of major concern. Typical applications include automotive, telecommunications, and industrial.

FEATURES

- · Stability at different environmental conditions $\Delta R/R \leq 1$ % (1000 h rated power at 70 °C)
- 2 mm pitch packaging option for 0603 size
- AEC-Q200 gualified
- FREE Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- Automotive
- Industrial
- Telecommunication

TECHNICAL S	SPECIFICATI	ONS						
DESCRIPTION	D10/CRCW0402 e3	D11/CRCW0603 e3	D12/CRCW0805 e3	D25/CRCW1206 e3	CRCW1210 e3	CRCW1218 e3	CRCW2010 e3	CRCW2512 e3
Imperial size	0402	0603	0805	1206	1210	1218	2010	2512
Metric size code	RR1005M	RR1608M	RR2012M	RR3216M	RR3225M	RR3246M	RR5025M	RR6332M
Resistance range	$1 \Omega \text{ to } 10 \text{ M}\Omega; \text{ jumper } (0 \Omega)$ $1 \Omega \text{ to } 10 \text{ M}\Omega; \text{ jumper } (0 \Omega)$ $1 \Omega \text{ to } 10 \text{ M}\Omega; \text{ jumper } (0 \Omega)$ 0Ω							
Resistance tolerance				± 5 %; ± 1 %				
Temperature coefficient			± 200	ppm/K; ± 100 pp	m/K			
Rated dissipation, P ₇₀ ⁽¹⁾	0.063 W	0.10 W	0.125 W	0.25 W	0.5 W	1.0 W	0.75 W	1.0 W
Operating voltage, U _{max.} AC _{RMS} /DC	50 V	75 V	150 V	200 V	200 V	200 V	400 V	500 V
Permissible film temperature, $g_{\rm F max.}^{(1)}$	155 °C							
Operating temperature range	-55 °C to +155 °C							
Max. resistance change at P_{70} for resistance range, $ \Delta R/R $, after ⁽²⁾ :								
1000 h 8000 h	$\leq 1 \ \%$ $\leq 2 \ \%$							
Permissible voltage against ambient (insulation):								
1 min, U _{ins}	75 V	100 V	200 V	300 V	300 V	300 V	300 V	300 V

Notes

⁽¹⁾ Please refer to "Application Information" below

⁽²⁾ Apply to components with stability class 1

APPLICATION INFORMATION

When the resistor dissipates power, a temperature rise above the ambient temperature occurs, dependent on the thermal resistance of the assembled resistor together with the printed circuit board. The rated dissipation applies only if the permitted film temperature is not exceeded.

These resistors do not feature a limited lifetime when operated within the permissible limits. However, resistance value drift increasing over operating time may result in exceeding a limit acceptable to the specific application, thereby establishing a functional lifetime.

Revision: 18-Jun-2018	
	For toophical quartie

HALOGEN

1

Revision: 18-Jun-2018

2

± 100 ppm/K	±1%	1 Ω to 10 M Ω
Jumper, I _{max.} = 1.5 A	\leq 20 m Ω	0 Ω
± 200 ppm/K	± 5 %	1 Ω to 10 M Ω
± 100 ppm/K	±1%	1 Ω to 10 M Ω
Jumper, I _{max.} = 2.0 A	\leq 20 m Ω	0 Ω
± 200 ppm/K	± 5 %	1 Ω to 10 M Ω
± 100 ppm/K	±1%	1 Ω to 10 $M\Omega$

TOLERANCE

±5%

RESISTANCE

1 Ω to 10 M Ω

D10/CRCW0402 e3	± 100 ppm/K	±1%	1 Ω to 10 MΩ	E24; E96
210/01/01/04/02 00				
	Jumper, I _{max.} = 1.5 A	≤ 20 mΩ	0 Ω	-
	± 200 ppm/K	± 5 %	1 Ω to 10 M Ω	E24
D11/CRCW0603 e3	± 100 ppm/K	±1%	1 Ω to 10 $M\Omega$	E24; E96
	Jumper, I _{max.} = 2.0 A	\leq 20 m Ω	0 Ω	-
	± 200 ppm/K	± 5 %	1 Ω to 10 M Ω	E24
D12/CRCW0805 e3	± 100 ppm/K	±1%	1 Ω to 10 M Ω	E24; E96
	Jumper, I _{max.} = 2.5 A	\leq 20 m Ω	0 Ω	-
	± 200 ppm/K	± 5 %	1 Ω to 10 M Ω	E24
D25/CRCW1206 e3	± 100 ppm/K	±1%	1 Ω to 10 M Ω	E24; E96
	Jumper, I _{max.} = 3.5 A	\leq 20 m Ω	0 Ω	-
	± 200 ppm/K	± 5 %	1 Ω to 10 $M\Omega$	E24
CRCW1210 e3	± 100 ppm/K	±1%	1 Ω to 10 $M\Omega$	E24; E96
	Jumper, I _{max.} = 5.0 A	\leq 20 m Ω	0 Ω	-
	± 200 ppm/K	± 5 %	1 Ω to 2.2 M Ω	E24
CRCW1218 e3	± 100 ppm/K	±1%	1 Ω to 2.2 M Ω	E24; E96
	Jumper, I _{max.} = 7.0 A	\leq 20 m Ω	0 Ω	-
	± 200 ppm/K	± 5 %	1 Ω to 10 $M\Omega$	E24
CRCW2010 e3	± 100 ppm/K	±1%	1 Ω to 10 M Ω	E24; E96
	Jumper, I _{max.} = 6.0 A	\leq 20 m Ω	0 Ω	-
	± 200 ppm/K	± 5 %	1 Ω to 10 M Ω	E24
CRCW2512 e3	± 100 ppm/K	±1%	1 Ω to 10 M Ω	E24; E96
	Jumper, I _{max.} = 7.0 A	\leq 20 m Ω	0 Ω	-

Note

• The temperature coefficient of resistance (TCR) is not specified for 0 Ω jumpers

TEMPERATURE COEFFICIENT AND RESISTANCE RANGE

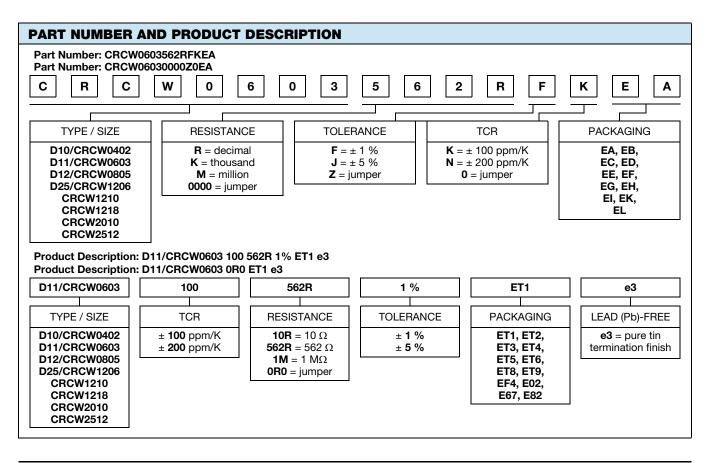
TCR

± 200 ppm/K

E-SERIES

E24

Vishay



TYPE / SIZE

D/CRCW e3

Vishay

PACKAGING							
TYPE / SIZE	CODE	QUANTITY	CARRIER TAPE	WIDTH	PITCH	REEL DIAMETER	
D10/CBCW0402 e2	ED = ET7	10 000		8 mm	0	Ø 180 mm/7"	
D10/CRCW0402 e3	EE = EF4	50 000		0 11111	2 mm	Ø 330 mm/13"	
	EI = ET2	5000				Ø 180 mm/7"	
	ED = ET3	10 000			2 mm	Ø 180 mm/7"	
	EL = ET4	20 000			2 11111	Ø 285 mm/11.25"	
D11/CRCW0603 e3	EE = ET8	50 000		8 mm		Ø 330 mm/13"	
	EA = ET1	5000				Ø 180 mm/7"	
	EB = ET5	10 000			4 mm	Ø 285 mm/11.25"	
	EC = ET6	20 000	Paper tape acc. to			Ø 330 mm/13"	
	EA = ET1	5000	IEC 60286-3, Type 1a			Ø 180 mm/7"	
D12/CRCW0805 e3	EB = ET5	10 000		8 mm	4 mm	Ø 285 mm/11.25"	
	EC = ET6	20 000				Ø 330 mm/13"	
	EA = ET1	5000		8 mm		Ø 180 mm/7"	
D25/CRCW1206 e3	EB = ET5	10 000			4 mm	Ø 285 mm/11.25"	
	EC = ET6	20 000				Ø 330 mm/13"	
	EA = ET1	5000				Ø 180 mm/7"	
CRCW1210 e3	EB = ET5	10 000		8 mm	4 mm	Ø 285 mm/11.25"	
	EC = ET6	20 000				Ø 330 mm/13"	
CRCW1218 e3	EK = ET9	4000		12 mm	4 mm	Ø 180 mm/7"	
CRCW2010 e3	EF = E02	4000	Blister tape acc. to	12 mm	4 mm	Ø 180 mm/7"	
CPCW2512 o2	EG = E67	2000	IEC 60286-3, Type 2a	12 mm	8 mm	Ø 180 mm/7"	
CRCW2512 e3	EH = E82	4000		12 11111	4 mm	180 mm/ <i>1*</i>	

Revision: 18-Jun-2018

3 For technical questions, contact: <u>thickfilmchip@vishay.com</u> Document Number: 20035

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

D/CRCW e3

Vishav

DESCRIPTION

Production is strictly controlled and follows an extensive set of instructions established for reproducibility. A cermet film layer and a glass-over are deposited on a high grade (Al_2O_3) ceramic substrate with its prepared inner contacts. A special laser is used to achieve the target value by smoothly fine trimming the resistive layer without damaging the ceramics. The resistor elements are covered by a protective coating designed for electrical, mechanical and climatic protection. The terminations receive a final pure tin on nickel plating.

The result of the determined production is verified by an extensive testing procedure on 100 % of the individual chip resistors. Only accepted products are laid directly into the tape in accordance with **IEC 60286-3 Type 1a and Type 2a** ⁽¹⁾.

ASSEMBLY

The resistors are suitable for processing on automatic SMD assembly systems. They are suitable for automatic soldering using wave, reflow or vapor phase as shown in **IEC 61760-1** ⁽¹⁾. The encapsulation is resistant to all cleaning solvents commonly used in the electronics industry, including alcohols, esters and aqueous solutions. The suitability of conformal coatings, potting compounds and their processes, if applied, shall be qualified by appropriate means to ensure the long-term stability of the whole system.

The resistors are RoHS-compliant, the pure tin plating provides compatibility with lead (Pb)-free and lead-containing soldering processes. Solderability is specified for 2 years after production or requalification. The permitted storage time is 20 years. The immunity of the plating against tin whisker growth has been proven under extensive testing.

MATERIALS

Vishay acknowledges the following systems for the regulation of hazardous substances:

- IEC 62474, Material Declaration for Products of and for the Electrotechnical Industry, with the list of declarable substances given therein ⁽²⁾
- The Global Automotive Declarable Substance List (GADSL) (3)
- The REACH regulation (1907/2006/EC) and the related list of substances with very high concern (SVHC) ⁽⁴⁾ for its supply chain

The products do not contain any of the banned substances as per IEC 62474, GADSL, or the SVHC list, see <u>www.vishay.com/how/leadfree</u>.

Hence the products fully comply with the following directives:

- 2000/53/EC End-of-Life Vehicle Directive (ELV) and Annex II (ELV II)
- 2011/65/EU Restriction of the Use of Hazardous Substances Directive (RoHS) with amendment 2015/863/EU
- 2012/19/EU Waste Electrical and Electronic Equipment Directive (WEEE)

Vishay pursues the elimination of conflict minerals from its supply chain, see the Conflict Minerals Policy at <u>www.vishay.com/doc?49037</u>.

APPROVALS

The resistors are qualified according to AEC-Q200.

Where applicable, the resistors are tested in accordance with **EN 140401-802** which refers to **EN 60115-1**, **EN 60115-8** and the variety of environmental test procedures of the **IEC 60068** ⁽¹⁾ series.

RELATED PRODUCTS

For more information about products with better TCR and tighter tolerance please refer to the "Lead (Pb)-Free Thick Film, Rectangular, Semi-Precision Chip Resistors" datasheet (www.vishav.com/doc?20036).

The D/CRCW with SnPb termination plating is designed for applications where lead bearing terminations are mandatory. For ordering D/CRCW with SnPb terminations please refer to latest edition of datasheet D/CRCW (www.vishay.com/doc?20008).

Notes

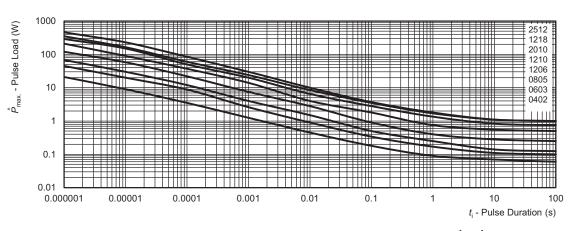
(2) The IEC 62474 list of declarable substances is maintained in a dedicated database, which is available at http://std.iec.ch/iec62474

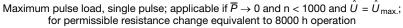
Document Number: 20035

⁽¹⁾ The quoted IEC standards are also released as EN standards with the same number and identical contents

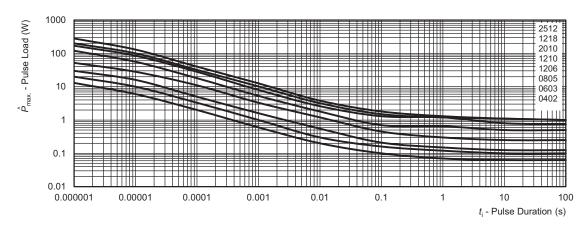
⁽³⁾ The Global Automotive Declarable Substance List (GADSL) is maintained by the American Chemistry Council and available at <u>www.gadsl.org</u>

⁽⁴⁾ The SVHC list is maintained by the European Chemical Agency (ECHA) and available at <u>http://echa.europa.eu/candidate-list-table</u>

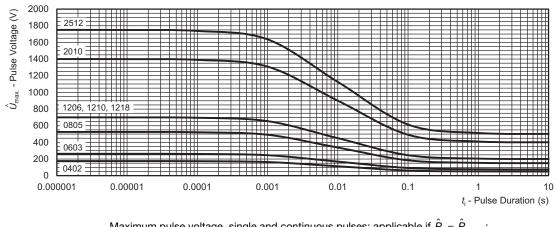



D/CRCW e3

Vishay


FUNCTIONAL PERFORMANCE

Single Pulse

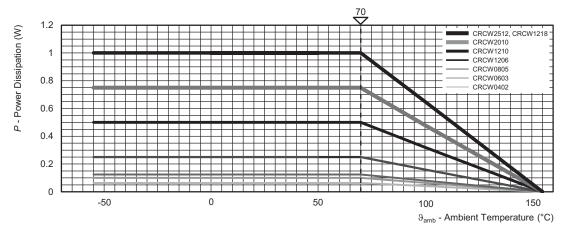


Continuous Pulse

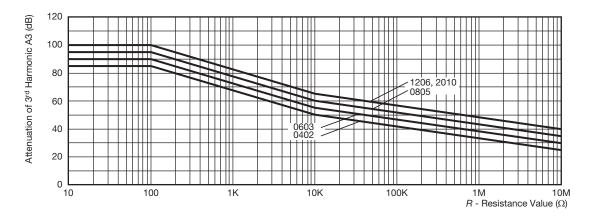
Maximum pulse load, continuous pulses; applicable if $\overline{P} \le P(\mathcal{G}_{amb})$ and $\hat{U} = \hat{U}_{max}$; for permissible resistance change equivalent to 8000 h operation

Pulse Voltage

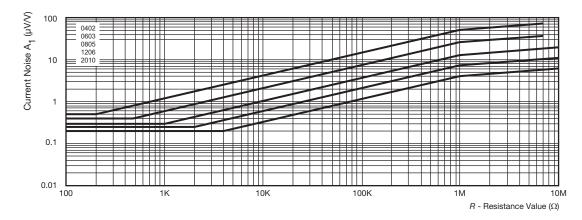
Maximum pulse voltage, single and continuous pulses; applicable if $\hat{P} = \hat{P}_{max}$; for permissible resistance change equivalent to 8000 h operation


5

D/CRCW e3


Vishay

Derating


/ISHAY

Non-Linearity

Current Noise

TESTS AND REQUIREMENTS

All executed tests are carried out in accordance with the following specifications:

EN 60115-1, generic specification

EN 60115-8 (successor of EN 140400), sectional specification

EN 140401-802, detail specification

IEC 60068-2-xx, test methods

The parameters stated in the Test Procedures and Requirements table are based on the required tests and permitted limits of EN 140401-802. The table presents only the most important tests, for the full test schedule refer to the documents listed above. However, some additional tests and a number of improvements against those minimum requirements have been included. The testing also covers most of the requirements specified by EIA/IS-703 and JIS-C-5201-1.

The tests are carried out under standard atmospheric conditions in accordance with IEC 60068-1, 4.3, whereupon the following values are applied:

Temperature: 15 °C to 35 °C

Relative humidity: 25 % to 75 %

Air pressure: 86 kPa to 106 kPa (860 mbar to 1060 mbar).

A climatic category LCT / UCT / 56 is applied, defined by the lower category temperature (LCT), the upper category temperature (UCT), and the duration of exposure in the damp heat, steady state test (56 days). The components are mounted for testing on boards in accordance with EN 60115-8, 2.4.2 unless otherwise specified.

TEST PROCEDURES AND REQUIREMENTS							
	IEC		PROCEDURE	REQUIREMENTS PERMISSIBLE CHANGE (∆ <i>R</i>)			
EN 60115-1	60082-2 ⁽¹⁾ TEST	TEST	PROCEDURE	STABILITY CLASS 1 OR BETTER	STABILITY CLASS 2 OR BETTER		
CLAUSE	METHOD		Stability for product types:	1.0 to	10 MO		
			D/CRCW e3	1 22 10	10 MΩ		
4.5	-	Resistance	-	±1%	± 5 %		
4.8	-	Temperature coefficient	At (20 / -55 / 20) °C and (20 / 155 / 20) °C	± 100 ppm/K	± 200 ppm/K		
4.25.1	_	Endurance at 70 °C	$U = \sqrt{P_{70} \times R} \text{ or } U = U_{\text{max.}}$ whichever is the less severe; 1.5 h on; 0.5 h off				
			70 °C; 1000 h	\pm (1 % R + 0.05 Ω)	\pm (2 % R + 0.1 Ω)		
			70 °C; 8000 h	\pm (2 % R + 0.1 Ω)	\pm (4 % R + 0.1 Ω)		
4.25.3	-	Endurance at upper category temperature	155 °C; 1000 h	± (1 % <i>R</i> + 0.05 Ω)	± (2 % <i>R</i> + 0.1 Ω)		
4.24	78 (Cab)	Damp heat, steady state	(40 ± 2) °C; 56 days; (93 ± 3) % RH	± (1 % <i>R</i> + 0.05 Ω)			
4.37	67 (Cy)	Damp heat, steady state, accelerated	$ \begin{array}{l} (85 \pm 2) \ ^{\circ}\text{C}; \ (85 \pm 5) \ \% \ \text{RH}; \\ U = \sqrt{0.1 \ x \ P_{85} \ x \ R} \le 100 \ \text{V}; \\ 1000 \ \text{h} \end{array} $	± (1 % <i>R</i> + 0.05 Ω)	± (2 % <i>R</i> + 0.1 Ω)		
4.23	-	Climatic sequence:					
4.23.2	2 (Bb)	Dry heat	125 °C; 16 h				
4.23.3	30 (Db)	Damp	55 °C; 24 h; ≥ 90 % RH; 1 cycle				
4.23.4	1 (Ab)	Cold	-55 °C; 2 h	± (1 % <i>R</i> + 0.05 Ω)	± (2 % <i>R</i> + 0.1 Ω)		
4.23.5	13 (M)	Low air pressure	8.5 kPa; 2 h; (25 ± 10) °C	_ (. ,	± (2 /071+0.132)		
4.23.6	30 (Db)	Damp heat, cyclic	55 °C; 5 days; > 90 % RH; 5 cycles				
4.23.7	-	DC load	$U = \sqrt{P_{70} \times R} \le U_{\text{max.}}$; 1 min				
-	1 (Aa)	Cold	-55 °C; 2 h	$\pm \left(0.25~\%~R+0.05~\Omega\right)$	\pm (0.5 % R + 0.05 Ω)		
4.19	14 (Na)	Rapid change of temperature	30 min. at -55 °C and 30 min. at 125 °C 1000 cycles	± (1 % <i>R</i> + 0.05 Ω) no visible damage			
4.13	-	Short time overload	$U = 2.5 \text{ x } \sqrt{P_{70} \text{ x } R} \le 2 \text{ x } U_{\text{max.}};$ whichever is the less severe; 5 s	± (2 % <i>R</i> + 0.05 Ω)			
4.27	-	Single pulse high voltage overload	Severity no. 4: $U = 10 \times \sqrt{P_{70} \times R}$ or $U = 2 \times U_{max.;}$ whichever is the less severe; 10 pulses 10 µs / 700 µs	± (1 % <i>R</i> + 0.05 Ω) no visible damage			

Revision: 18-Jun-2018

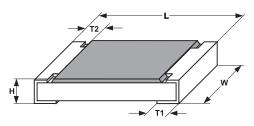
For technical questions, contact: thickfilmchip@vishay.com

Document Number: 20035

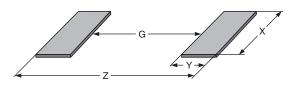
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

Vishay

TEST PROCEDURES AND REQUIREMENTS							
	IEC		PROCEDURE	REQUIREMENTS PERMISSIBLE CHANGE (∆ <i>R</i>)			
EN 60115-1 60082-2 (60082-2 ⁽¹⁾ TEST	TEST	PROCEDURE	STABILITY CLASS 1 OR BETTER	STABILITY CLASS 2 OR BETTER		
CLAUSE	METHOD		Stability for product types:	1 Ω to 10 ΜΩ			
			D/CRCW e3	1 32 10			
4.39	-	Periodic electric overload	$U = \sqrt{15 \times P_{70} \times R} \text{ or}$ $U = 2 \times U_{\text{max};}$ whichever is the less severe; 0.1 s on; 2.5 s off; 1000 cycles	± (1 % <i>R</i> + 0.05 Ω) no visible damage			
4.40	-	Electrostatic discharge (human body model)	IEC 61340-3-1 ⁽¹⁾ ; 3 positive + 3 negative discharges; ESD voltage acc. to size	± (1 % <i>R</i> + 0.05 Ω)			
4.22	6 (Fc)	Vibration	Endurance by sweeping; 10 Hz to 2000 Hz; no resonance; amplitude \leq 1.5 mm or \leq 200 m/s ² ; 7.5 h	± (0.25 % <i>R</i> + 0.05 Ω) no visible damage	± (0.5 % <i>R</i> + 0.05 Ω) no visible damage		
			Solder bath method, SnPb40; non-activated flux (235 ± 5) °C; (2 ± 0.2) s	Good tinning (>	95 % covered);		
4.17	58 (Td)	Solderability	Solder bath method, Sn96.5Ag3Cu0.5; non-activated flux (245 ± 5) °C; (3 ± 0.3) s	5.	damage		
4.18	58 (Td)	Resistance to soldering heat	Soldering bath method; (260 \pm 5) °C; (10 \pm 1) s	\pm (0.25 % R + 0.05 Ω)	\pm (0.5 % R + 0.05 Ω)		
4.29	45 (XA)	Component solvent resistance	Isopropyl alcohol; +50 °C; method 2	No visible damage			
4.32	21 (Uu ₃)	Shear (adhesion)	CRCW0402 an CRCW0603: 9 N CRCW0805 to CRCW2512: 45 N	No visible damage			
4.33	21 (Ue ₁)	Substrate bending	Depth 2 mm; 3 times	\pm (0.25 % R + 0.05 Ω) no visible damage, no open circuit in bent position			
4.7	-	Voltage proof	<i>U</i> = 1.4 x <i>U</i> _{ins} ; 60 s	No flashover	No flashover or breakdown		
4.35	-	Flammability, needle flame test	IEC 60695-11-5 ⁽¹⁾ ; 10 s	No burning after 30 s			


Note

⁽¹⁾ The quoted IEC standards are also released as EN standards with the same number and identical contents


Vishay

DIMENSIONS

DIMENSIONS AND MASS							
TYPE / SIZE	L (mm)	W (mm)	H (mm)	T1 (mm)	T2 (mm)	MASS (mg)	
D10/CRCW0402 e3	1.0 ± 0.05	0.5 ± 0.05	0.35 ± 0.05	0.25 ± 0.05	0.2 ± 0.10	0.65	
D11/CRCW0603 e3	1.55 + 0.10 / - 0.05	0.85 ± 0.10	0.45 ± 0.05	0.3 ± 0.20	0.3 ± 0.20	2	
D12/CRCW0805 e3	2.0 + 0.20 / - 0.10	1.25 ± 0.15	0.45 ± 0.05	0.3 + 0.20 / - 0.10	0.3 ± 0.20	5.5	
D25/CRCW1206 e3	3.2 + 0.10 / - 0.20	1.6 ± 0.15	0.55 ± 0.05	0.45 ± 0.20	0.4 ± 0.20	10	
CRCW1210 e3	3.2 ± 0.20	2.5 ± 0.20	0.55 ± 0.05	0.45 ± 0.20	0.4 ± 0.20	16	
CRCW1218 e3	3.2 + 0.10 / - 0.20	4.6 ± 0.15	0.55 ± 0.05	0.45 ± 0.20	0.4 ± 0.20	29.5	
CRCW2010 e3	5.0 ± 0.15	2.5 ± 0.15	0.6 ± 0.10	0.6 ± 0.20	0.6 ± 0.20	25.5	
CRCW2512 e3	6.3 ± 0.20	3.15 ± 0.15	0.6 ± 0.10	0.6 ± 0.20	0.6 ± 0.20	40.5	

SOLDER PAD DIMENSIONS

RECOMMENDED SOLDER PAD DIMENSIONS								
		WAVE SO	LDERING		REFLOW SOLDERING			
TYPE / SIZE	G (mm)	Y (mm)	X (mm)	Z (mm)	G (mm)	Y (mm)	X (mm)	Z (mm)
D10/CRCW0402 e3	-	-	-	-	0.45	0.6	0.6	1.65
D11/CRCW0603 e3	0.65	1.10	1.25	2.85	0.75	0.75	1.00	2.15
D12/CRCW0805 e3	0.90	1.30	1.60	3.50	1.00	0.95	1.45	2.90
D25/CRCW1206 e3	1.40	1.40	1.95	4.20	1.50	1.05	1.80	3.60
CRCW1210 e3	1.80	1.45	2.95	4.70	1.70	1.10	2.80	4.90
CRCW1218 e3	1.80	1.30	5.10	4.40	1.90	1.10	4.90	4.10
CRCW2010 e3	3.40	1.65	2.85	6.90	3.50	1.45	2.80	6.30
CRCW2512 e3	4.60	1.60	3.65	8.70	4.75	1.45	3.50	7.65

Note

The rated dissipation applies only if the permitted film temperature is not exceeded. Furthermore, a high level of ambient temperature or of
power dissipation may raise the temperature of the solder joint, hence special solder alloys or board materials may be required to maintain
the reliability of the assembly.
The given solder pad dimensions reflect the considerations for board design and assembly as outlined e.g. in standards IEC 61188-5-x or

The given solder pad dimensions reflect the considerations for board design and assembly as outlined e.g. in standards IEC 61188-5-x or in publication IPC-7351. They do not guarantee any supposed thermal properties, particularly as these are also strongly influenced by many other parameters. Still, the given solder pad dimensions will be found adequate for most general applications

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Vishay:

CRCW06036K65FKEA CR	CW120616R9FKEA	CRCW1206680KFKEA	CRCW1206280KFKEA
CRCW06031K21FKEA CRC	W120663R4FKEA	CRCW1206619KFKEA	CRCW06032K21FKEA
CRCW120662K0JNEA CRC	W120624K0FKEA	CRCW1206287KFKEA	CRCW0603121KFKEA
CRCW1206487KFKEA CRC	W0603221KFKEA	CRCW120634R8FKEA	CRCW0603240RJNEA
CRCW0603300RFKEA CRC	W0603976RFKEA	CRCW12067K32FKEA	CRCW060315R0JNEA
CRCW060334R0FKEA CRC	W120617R8FKEA	CRCW1206787KFKEA	CRCW060330R0JNEA
CRCW060350R0FKEA CRC	W0603768KFKEA	CRCW0603432RFKEA	CRCW0603619RFKEA
CRCW12061K80FKEA CRC	W12066K80FKEA	CRCW0603953KFKEA	CRCW120610R5FKEA
CRCW06037M50JNEA CRC	CW06031M50JNEA	CRCW120668K0JNEA	CRCW060375R0FKEA
CRCW0603340KFKEA CRC	W0603140KFKEA	CRCW06039K31FKEA	CRCW0603240KFKEA
CRCW060359K0FKEA CRC	W1206698KFKEA	CRCW06032R49FKEA	CRCW12066M81FKEA
CRCW06035R62FKEA CRC	W1206309KFKEA	CRCW120632R4FKEA	CRCW120612R4FKEA
CRCW12065M76FKEA CRC	CW12069M76FKEA	CRCW120695R3FKEA	CRCW120610R7FKEA
CRCW060375K0FKEA CRC	W06038M20JNEA	CRCW12067R50JNEA	CRCW0603316KFKEA
CRCW06032R70JNEA CRC	W12061R80JNEA	CRCW0603953RFKEA	CRCW060382R0FKEA
CRCW060349R9FKEA CRC	W0603576RFKEA	CRCW120662K0FKEA	CRCW060363K4FKEA
CRCW0603510KFKEA CRC	W060360K4FKEA	CRCW0603210KFKEA	CRCW0603110KFKEA
CRCW06031R10JNEA CRC	W060327K4FKEA	CRCW1206422KFKEA	CRCW0603287KFKEA
CRCW120644R2FKEA CRC	W0603487KFKEA	CRCW0603187KFKEA	CRCW0603787KFKEA
CRCW12062R70JNEA CRC	W120657R6FKEA	CRCW12064M99FKEA	CRCW0603360RJNEA
CRCW060332K4FKEA CRC	W060337K4FKEA	CRCW060312K4FKEA	CRCW060317K4FKEA
CRCW060315K4FKEA CRC	W060346K4FKEA	CRCW0603549RFKEA	CRCW060351R1FKEA
CRCW060390R9FKEA CRC	W0603820KFKEA	CRCW1206113KFKEA	CRCW0603301KFKEA
CRCW0603270RJNEA CRC	W0603243RFKEA	CRCW06038K06FKEA	CRCW06031K91FKEA
CRCW1206300KJNEA CRC	W1206200KJNEA	CRCW06032K20FKEA	CRCW060323R2FKEA